

Welcome to the documentation of Fenix

Contents:

	Fenix Overview

	Fenix service installation guide
	Fenix service overview

	Install and configure

	Verify operation

	Usage

	Contributor Guide

	Configuration
	Configuration files

	Dependencies and special configuration

	API
	API v1

	Admin API

	Project API

	Command line interface reference

	User guide
	Fenix Architecture

	Fenix BaseWorkflow

	Fenix Advanced Workflow

	Notifications

	Administrators guide
	Fenix

	VNF and VNFM

	Infrastructure Admin UI

	Integration

	References

Indices and tables

	Index

	Module Index

	Search Page

Fenix

OpenStack host maintenance and upgrade in interaction with the application

Fenix implements rolling infrastructure maintenance and upgrade in interaction
with the application on top of it. In Telco world we talk about VNFM, but one can
implement his own simple manager for any application.

Infrastructure admin can call Fenix API to start a maintenance workflow
session. This session will make needed maintenance and upgrade operations to
infrastructure in interaction with the application manager to guarantee zero
downtime for its service. Interaction gives the ability for the application manager
to know about new capabilities coming over maintenance to make his own upgrade.
The application can have a time window to finish what he is doing, make own action
to re-instantiate his instance or have Fenix to make the migration. Also scaling
applications or retirement will be possible.

As Fenix has project-specific messaging with information about instances
affected towards the application manager, it will also have admin-level messaging.
This messaging can tell what host is down for maintenance, back in use, added
or retired. Any infrastructure component can catch this information as needed.

Fenix also works with “one-click”. Infrastructure admin just creates the
workflow session he wants and all needed software changes are automatically
downloaded, the workflow is run to wanted hosts according to the request and
depending on how the used workflow plug-in and action plug-ins are
implemented.

In the NFV Fenix needs to be supported by infrastructure admin UI, VNFM and
VNF implementation. Fenix itself should be integrated into infrastructure
to be used it the infrastructure maintenance, upgrade, scaling and life-cycle
operations.

	Free software: Apache license

	Documentation: https://fenix.readthedocs.io/en/latest/index.html

	Developer Documentation: https://wiki.openstack.org/wiki/Fenix

	Source: https://opendev.org/x/fenix

	Running sample workflows: https://opendev.org/x/fenix/src/branch/master/fenix/tools/README.md

	Bug tracking and Blueprints: https://storyboard.openstack.org/#!/project/x/fenix

	How to contribute: https://docs.openstack.org/infra/manual/developers.html

	Fenix Specifications

Fenix service installation guide

	Fenix service overview

	Install and configure
	Install and configure for Red Hat Enterprise Linux and CentOS

	Install and configure for Ubuntu

	Install and configure for openSUSE and SUSE Linux Enterprise

	Install and configure for DevStack

	Verify operation

The host maintenance service (Fenix) provides…

This chapter assumes a working setup of OpenStack following the
OpenStack Installation Tutorial [https://docs.openstack.org/install-guide/].

Fenix service overview

The Fenix service provides…

The Fenix service consists of the following components:

	fenix-api service

	Accepts and responds to end user API calls

	fenix-engine service

	Runs the pluggable maintenance sessions

Install and configure

This section describes how to install and configure the
host maintenance service, code-named Fenix, on the controller node.

This section assumes that you already have a working OpenStack
environment.

Note that installation and configuration vary by distribution.
Currently Fenix is not included in any distributions. Instead
there is shown the generic way of installing and how to install
via DevStack.

	Install and configure for Red Hat Enterprise Linux and CentOS
	Prerequisites

	Installation

	Configuration files

	Finalize installation

	Install and configure for Ubuntu
	Prerequisites

	Installation

	Configuration files

	Finalize installation

	Install and configure for openSUSE and SUSE Linux Enterprise
	Prerequisites

	Installation

	Configuration files

	Finalize installation

	Install and configure for DevStack
	Install and configure components

Install and configure for Red Hat Enterprise Linux and CentOS

This section describes how to install and configure the Fenix service
for Red Hat Enterprise Linux and CentOS.

Prerequisites

Before you install and configure the Fenix service,
you must create a database, service credentials, and API endpoints.

	To create the database, complete these steps:

	Use the database access client to connect to the database
server as the root user:

$ mysql -u root -p

	Create the fenix database:

CREATE DATABASE fenix;

	Grant proper access to the fenix database:

GRANT ALL PRIVILEGES ON fenix.* TO 'fenix'@'localhost' \
 IDENTIFIED BY 'FENIX_DBPASS';
GRANT ALL PRIVILEGES ON fenix.* TO 'fenix'@'%' \
 IDENTIFIED BY 'FENIX_DBPASS';

Replace FENIX_DBPASS with a suitable password.

	Exit the database access client.

exit;

	Source the admin credentials to gain access to
admin-only CLI commands:

$. admin-openrc

	To create the service credentials, complete these steps:

	Create the fenix user:

$ openstack user create --domain default --password-prompt fenix

	Add the admin role to the fenix user:

$ openstack role add --project service --user fenix admin

	Create the Fenix service entities:

$ openstack service create --name fenix --description "fenix" fenix

Note! In Fenix workflow you may want to have ssh access to all nodes for
your Fenix action plug-ins to scp filex and locally execute scripts on
those nodes. This means you may want to have the ssh without password
configured for Fenix service user.

	Create the Fenix service API endpoints:

$ openstack endpoint create --region RegionOne \
 fenix public http://controller:XXXX/vY/%\(tenant_id\)s
$ openstack endpoint create --region RegionOne \
 fenix internal http://controller:XXXX/vY/%\(tenant_id\)s
$ openstack endpoint create --region RegionOne \
 fenix admin http://controller:XXXX/vY/%\(tenant_id\)s

Installation

Note! Fenix is currently not included in Linux distributions.
You need to clone and install it from source.

$ git clone https://opendev.org/x/fenix
$ cd fenix
$ sudo python setup.py install

Configuration files

Configuration options. All options have default values. Mandatory options are
mentioned as those are usually at least the ones needed to be defined to match
to the current system.

	Edit the /etc/fenix/fenix-api.conf file the configure fenix-api

[DEFAULT]

Mandatory configuration options

Host where API is running. default="127.0.0.1"
host = <hostname>
API Port. default=5000
port = <port>
An URL representing the messaging driver to use and its full configuration.
transport_url = <transport URL>

[keystone_authtoken]
OpenStack Identity service URL.
auth_url = http://127.0.0.1/identity
Authentication type
auth_type = password
PEM encoded Certificate Authority to use when verifying HTTPs connections.
cafile = /opt/stack/data/ca-bundle.pem
The Fenix admin project domain.
project_domain_name = Default
The Fenix admin project.
project_name = admin
A domain name the os_username belongs to.
user_domain_name = Default
Fenix admin user password.
password = admin
Fenix user. Must have admin role.
username = admin

	Edit the /etc/fenix/fenix.conf file the configure fenix-engine

[DEFAULT]

Mandatory configuration options

Host where engine is running. default="127.0.0.1"
host = <hostname>
API Port. default=5000
port = <port>
An URL representing the messaging driver to use and its full configuration.
transport_url = <transport URL>

Optional configuration options

Wait for project reply after message sent to project. default 120
wait_project_reply = 120
Project maintenance reply confirmation time in seconds. default 40
project_maintenance_reply = 40
Project scale in reply confirmation time in seconds. default 60
project_scale_in_reply = 60
Number of live migration retries. default 5
live_migration_retries = 5
How long to wait live migration to be done. default 600
live_migration_wait_time = 600

[database]

database connection URL
connection = mysql+pymysql://fenix:FENIX_DBPASS@controller/fenix

[service_user]

OpenStack Identity service URL. Default to environmental variable OS_AUTH_URL
os_auth_url = http://127.0.0.1/identity
Fenix user. Must have admin role. Default to environmental variable OS_USERNAME
os_username = admin
Fenix admin user password. Default to environmental variable OS_PASSWORD
os_password = admin
A domain name the os_username belongs to. Default to environmental variable OS_USER_DOMAIN_NAME
os_user_domain_name = default
The Fenix admin project. Default to environmental variable OS_PROJECT_NAME
os_project_name = admin
The Fenix admin project domain. Default to environmental variable OS_PROJECT_DOMAIN_NAME
os_project_domain_name = default

Finalize installation

Start the fenix services and configure them to start when
the system boots:

sudo systemctl enable openstack-fenix-api.service
sudo systemctl start openstack-fenix-api.service

sudo systemctl enable openstack-fenix-engine.service
sudo systemctl start openstack-fenix-engine.service

Install and configure for Ubuntu

This section describes how to install and configure the Fenix
service for Ubuntu.

Prerequisites

Before you install and configure the Fenix service,
you must create a database, service credentials, and API endpoints.

	To create the database, complete these steps:

	Use the database access client to connect to the database
server as the root user:

$ mysql -u root -p

	Create the fenix database:

CREATE DATABASE fenix;

	Grant proper access to the fenix database:

GRANT ALL PRIVILEGES ON fenix.* TO 'fenix'@'localhost' \
 IDENTIFIED BY 'FENIX_DBPASS';
GRANT ALL PRIVILEGES ON fenix.* TO 'fenix'@'%' \
 IDENTIFIED BY 'FENIX_DBPASS';

Replace FENIX_DBPASS with a suitable password.

	Exit the database access client.

exit;

	Source the admin credentials to gain access to
admin-only CLI commands:

$. admin-openrc

	To create the service credentials, complete these steps:

	Create the fenix user:

$ openstack user create --domain default --password-prompt fenix

	Add the admin role to the fenix user:

$ openstack role add --project service --user fenix admin

	Create the Fenix service entities:

$ openstack service create --name fenix --description "fenix" fenix

Note! In Fenix workflow you may want to have ssh access to all nodes for
your Fenix action plug-ins to scp filex and locally execute scripts on
those nodes. This means you may want to have the ssh without password
configured for Fenix service user.

	Create the Fenix service API endpoints:

$ openstack endpoint create --region RegionOne \
 fenix public http://controller:XXXX/vY/%\(tenant_id\)s
$ openstack endpoint create --region RegionOne \
 fenix internal http://controller:XXXX/vY/%\(tenant_id\)s
$ openstack endpoint create --region RegionOne \
 fenix admin http://controller:XXXX/vY/%\(tenant_id\)s

Installation

Note! Fenix is currently not included in Linux distributions.
You need to clone and install it from source.

$ git clone https://opendev.org/x/fenix
$ cd fenix
$ sudo python setup.py install

Configuration files

Configuration options. All options have default values. Mandatory options are
mentioned as those are usually at least the ones needed to be defined to match
to the current system.

	Edit the /etc/fenix/fenix-api.conf file the configure fenix-api

[DEFAULT]

Mandatory configuration options

Host where API is running. default="127.0.0.1"
host = <hostname>
API Port. default=5000
port = <port>
An URL representing the messaging driver to use and its full configuration.
transport_url = <transport URL>

[keystone_authtoken]
OpenStack Identity service URL.
auth_url = http://127.0.0.1/identity
Authentication type
auth_type = password
PEM encoded Certificate Authority to use when verifying HTTPs connections.
cafile = /opt/stack/data/ca-bundle.pem
The Fenix admin project domain.
project_domain_name = Default
The Fenix admin project.
project_name = admin
A domain name the os_username belongs to.
user_domain_name = Default
Fenix admin user password.
password = admin
Fenix user. Must have admin role.
username = admin

	Edit the /etc/fenix/fenix.conf file the configure fenix-engine

[DEFAULT]

Mandatory configuration options

Host where engine is running. default="127.0.0.1"
host = <hostname>
API Port. default=5000
port = <port>
An URL representing the messaging driver to use and its full configuration.
transport_url = <transport URL>

Optional configuration options

Wait for project reply after message sent to project. default 120
wait_project_reply = 120
Project maintenance reply confirmation time in seconds. default 40
project_maintenance_reply = 40
Project scale in reply confirmation time in seconds. default 60
project_scale_in_reply = 60
Number of live migration retries. default 5
live_migration_retries = 5
How long to wait live migration to be done. default 600
live_migration_wait_time = 600

[database]

database connection URL
connection = mysql+pymysql://fenix:FENIX_DBPASS@controller/fenix

[service_user]

OpenStack Identity service URL. Default to environmental variable OS_AUTH_URL
os_auth_url = http://127.0.0.1/identity
Fenix user. Must have admin role. Default to environmental variable OS_USERNAME
os_username = admin
Fenix admin user password. Default to environmental variable OS_PASSWORD
os_password = admin
A domain name the os_username belongs to. Default to environmental variable OS_USER_DOMAIN_NAME
os_user_domain_name = default
The Fenix admin project. Default to environmental variable OS_PROJECT_NAME
os_project_name = admin
The Fenix admin project domain. Default to environmental variable OS_PROJECT_DOMAIN_NAME
os_project_domain_name = default

Finalize installation

Restart the fenix services:

sudo service openstack-fenix-api restart
sudo service openstack-fenix-engine restart

Install and configure for openSUSE and SUSE Linux Enterprise

This section describes how to install and configure the Fenix service
for openSUSE and SUSE Linux Enterprise Server.

Prerequisites

Before you install and configure the Fenix service,
you must create a database, service credentials, and API endpoints.

	To create the database, complete these steps:

	Use the database access client to connect to the database
server as the root user:

$ mysql -u root -p

	Create the fenix database:

CREATE DATABASE fenix;

	Grant proper access to the fenix database:

GRANT ALL PRIVILEGES ON fenix.* TO 'fenix'@'localhost' \
 IDENTIFIED BY 'FENIX_DBPASS';
GRANT ALL PRIVILEGES ON fenix.* TO 'fenix'@'%' \
 IDENTIFIED BY 'FENIX_DBPASS';

Replace FENIX_DBPASS with a suitable password.

	Exit the database access client.

exit;

	Source the admin credentials to gain access to
admin-only CLI commands:

$. admin-openrc

	To create the service credentials, complete these steps:

	Create the fenix user:

$ openstack user create --domain default --password-prompt fenix

	Add the admin role to the fenix user:

$ openstack role add --project service --user fenix admin

	Create the Fenix service entities:

$ openstack service create --name fenix --description "fenix" fenix

Note! In Fenix workflow you may want to have ssh access to all nodes for
your Fenix action plug-ins to scp filex and locally execute scripts on
those nodes. This means you may want to have the ssh without password
configured for Fenix service user.

	Create the Fenix service API endpoints:

$ openstack endpoint create --region RegionOne \
 fenix public http://controller:XXXX/vY/%\(tenant_id\)s
$ openstack endpoint create --region RegionOne \
 fenix internal http://controller:XXXX/vY/%\(tenant_id\)s
$ openstack endpoint create --region RegionOne \
 fenix admin http://controller:XXXX/vY/%\(tenant_id\)s

Installation

Note! Fenix is currently not included in Linux distributions.
You need to clone and install it from source.

$ git clone https://opendev.org/x/fenix
$ cd fenix
$ sudo python setup.py install

Configuration files

Configuration options. All options have default values. Mandatory options are
mentioned as those are usually at least the ones needed to be defined to match
to the current system.

	Edit the /etc/fenix/fenix-api.conf file the configure fenix-api

[DEFAULT]

Mandatory configuration options

Host where API is running. default="127.0.0.1"
host = <hostname>
API Port. default=5000
port = <port>
An URL representing the messaging driver to use and its full configuration.
transport_url = <transport URL>

[keystone_authtoken]
OpenStack Identity service URL.
auth_url = http://127.0.0.1/identity
Authentication type
auth_type = password
PEM encoded Certificate Authority to use when verifying HTTPs connections.
cafile = /opt/stack/data/ca-bundle.pem
The Fenix admin project domain.
project_domain_name = Default
The Fenix admin project.
project_name = admin
A domain name the os_username belongs to.
user_domain_name = Default
Fenix admin user password.
password = admin
Fenix user. Must have admin role.
username = admin

	Edit the /etc/fenix/fenix.conf file the configure fenix-engine

[DEFAULT]

Mandatory configuration options

Host where engine is running. default="127.0.0.1"
host = <hostname>
API Port. default=5000
port = <port>
An URL representing the messaging driver to use and its full configuration.
transport_url = <transport URL>

Optional configuration options

Wait for project reply after message sent to project. default 120
wait_project_reply = 120
Project maintenance reply confirmation time in seconds. default 40
project_maintenance_reply = 40
Project scale in reply confirmation time in seconds. default 60
project_scale_in_reply = 60
Number of live migration retries. default 5
live_migration_retries = 5
How long to wait live migration to be done. default 600
live_migration_wait_time = 600

[database]

database connection URL
connection = mysql+pymysql://fenix:FENIX_DBPASS@controller/fenix

[service_user]

OpenStack Identity service URL. Default to environmental variable OS_AUTH_URL
os_auth_url = http://127.0.0.1/identity
Fenix user. Must have admin role. Default to environmental variable OS_USERNAME
os_username = admin
Fenix admin user password. Default to environmental variable OS_PASSWORD
os_password = admin
A domain name the os_username belongs to. Default to environmental variable OS_USER_DOMAIN_NAME
os_user_domain_name = default
The Fenix admin project. Default to environmental variable OS_PROJECT_NAME
os_project_name = admin
The Fenix admin project domain. Default to environmental variable OS_PROJECT_DOMAIN_NAME
os_project_domain_name = default

Finalize installation

Start the fenix services and configure them to start when
the system boots:

sudo systemctl enable openstack-fenix-api.service
sudo systemctl start openstack-fenix-api.service

sudo systemctl enable openstack-fenix-engine.service
sudo systemctl start openstack-fenix-engine.service

Install and configure for DevStack

Install and configure components

	Install Fenix by adding needed options to local.conf

#Enable Fenix plugin
enable_plugin fenix https://opendev.org/x/fenix

#Enable Fenix services
enable_service fenix-engine
enable_service fenix-api

Verify operation

Verify operation of the fenix service.

Note

Perform these commands on the controller node.

	List service components to verify successful launch and registration
of each process. Example for DevStack:

$ sudo systemctl status devstack@fenix*

Usage

To use Fenix in a project:

TBD

Contributor Guide

If you would like to contribute to the development of OpenStack, you must
follow the steps in this page:

https://docs.openstack.org/infra/manual/developers.html

If you already have a good understanding of how the system works and your
OpenStack accounts are set up, you can skip to the development workflow
section of this documentation to learn how changes to OpenStack should be
submitted for review via the Gerrit tool:

https://docs.openstack.org/infra/manual/developers.html#development-workflow

Pull requests submitted through GitHub will be ignored.

Bugs should be filed on Storyboard https://storyboard.openstack.org/#!/project/x/fenix

More project information can be found from https://wiki.openstack.org/wiki/Fenix

Configuration

	Configuration files

Dependencies and special configuration

Fenix Default workflow VNFM interaction also assumes AODH is installed.
Among that, here is mentioned what you may want to configure when using Fenix.

	Fenix external dependencies
	Nova

	AODH and Ceilometer configuration

Configuration files

Configuration options. All options have default values. Mandatory options are
mentioned as those are usually at least the ones needed to be defined to match
to the current system.

	Edit the /etc/fenix/fenix-api.conf file the configure fenix-api

[DEFAULT]

Mandatory configuration options

Host where API is running. default="127.0.0.1"
host = <hostname>
API Port. default=5000
port = <port>
An URL representing the messaging driver to use and its full configuration.
transport_url = <transport URL>

[keystone_authtoken]
OpenStack Identity service URL.
auth_url = http://127.0.0.1/identity
Authentication type
auth_type = password
PEM encoded Certificate Authority to use when verifying HTTPs connections.
cafile = /opt/stack/data/ca-bundle.pem
The Fenix admin project domain.
project_domain_name = Default
The Fenix admin project.
project_name = admin
A domain name the os_username belongs to.
user_domain_name = Default
Fenix admin user password.
password = admin
Fenix user. Must have admin role.
username = admin

	Edit the /etc/fenix/fenix.conf file the configure fenix-engine

[DEFAULT]

Mandatory configuration options

Host where engine is running. default="127.0.0.1"
host = <hostname>
API Port. default=5000
port = <port>
An URL representing the messaging driver to use and its full configuration.
transport_url = <transport URL>

Optional configuration options

Wait for project reply after message sent to project. default 120
wait_project_reply = 120
Project maintenance reply confirmation time in seconds. default 40
project_maintenance_reply = 40
Project scale in reply confirmation time in seconds. default 60
project_scale_in_reply = 60
Number of live migration retries. default 5
live_migration_retries = 5
How long to wait live migration to be done. default 600
live_migration_wait_time = 600

[database]

database connection URL
connection = mysql+pymysql://fenix:FENIX_DBPASS@controller/fenix

[service_user]

OpenStack Identity service URL. Default to environmental variable OS_AUTH_URL
os_auth_url = http://127.0.0.1/identity
Fenix user. Must have admin role. Default to environmental variable OS_USERNAME
os_username = admin
Fenix admin user password. Default to environmental variable OS_PASSWORD
os_password = admin
A domain name the os_username belongs to. Default to environmental variable OS_USER_DOMAIN_NAME
os_user_domain_name = default
The Fenix admin project. Default to environmental variable OS_PROJECT_NAME
os_project_name = admin
The Fenix admin project domain. Default to environmental variable OS_PROJECT_DOMAIN_NAME
os_project_domain_name = default

Fenix external dependencies

Nova

Fenix will normally use cold and live migrations. For these to work, Nova
service user should be configured to be able to ssh between compute nodes.
You may also want to change some other related configuration parameters.

AODH and Ceilometer configuration

When want to utilize the VNF(M)/EM interaction with Fenix, VNF needs to
supbscribe to AODH event alarm for ‘maintenance.scheduled’ type of
notifications.

Any service may also want to know when host is added, retired, in maintenance
or back from maintenance. For this those services can subscribe to AODH event
alarm for ‘maintenance.host’ type of notification.

	/etc/ceilometer/event_definitions.yaml

- event_type: maintenance.scheduled
 traits:
 actions_at:
 fields: payload.maintenance_at
 type: datetime
 allowed_actions:
 fields: payload.allowed_actions
 host_id:
 fields: payload.host_id
 instances:
 fields: payload.instances
 metadata:
 fields: payload.metadata
 project_id:
 fields: payload.project_id
 reply_url:
 fields: payload.reply_url
 session_id:
 fields: payload.session_id
 state:
 fields: payload.state
- event_type: maintenance.host
 traits:
 host:
 fields: payload.host
 project_id:
 fields: payload.project_id
 session_id:
 fields: payload.session_id
 state:
 fields: payload.state

	/etc/ceilometer/event_pipeline.yaml

- notifier://
- notifier://?topic=alarm.all

For AODH and Ceilometer configuration to take into effect, you may want to
restart corresponding services

$ sudo systemctl restart openstack-aodh-listener.service
$ sudo systemctl restart openstack-ceilometer-notification.service

In DevStack you may want to enable Ceilometer and AODH in local.conf

enable_plugin ceilometer https://opendev.org/openstack/ceilometer
enable_plugin aodh https://opendev.org/openstack/aodh

API

	API v1

	Admin API
	Admin workflow session API

	Project API
	Project workflow session API

	Project NFV constraints API

API v1

 Command line interface reference

Command line interface reference

CLI reference of Fenix.

Currently, Fenix does not implement CLI. Real product integration is
expected to have GUI and VNFM (application manager) to support Fenix.
In the OPNFV Doctor, the maintenance test case implements infrastructure
admin and VNFM behavior. In Fenix, you can find ‘infra_admin.py’ and
‘vnfm.py’ that implements the same and are always up-to-date to be tested
against Fenix example workflows. Those are anyhow just for the testing sample
application but works to get the idea for product implementation.

 User guide

User guide

	Fenix Architecture
	Internal design

	Interface design

	High level sequence diagram

	Fenix BaseWorkflow
	States

	Future

	Fenix Advanced Workflow
	States

	Notifications
	Admin

	Project

 Fenix Architecture

Fenix Architecture

Fenix is an engine designed to make a rolling infrastructure maintenance and
upgrade possible with zero downtime for the application running on top of it.
Interfaces are designed to be generic, so they can work with different clouds,
virtual machines and containers. Current workflows are for OpenStack and
Kubernetes, but the workflow plug-in implementation defines what kind
of cloud you want to support.

The key in Fenix providing the zero downtime is to have an ability to
communicate with an application manager (VNFM). As the application is aware of
maintenance affecting its instances, it can safely be running somewhere else
when it happens. The application also gets to know about new capabilities coming
over infrastructure maintenance/upgrade and can plan its own upgrade at the
same. As Fenix also provides scaling request towards applications, it is
possible to make upgrades without adding more resources.

Fenix has the ability to tell any infrastructure service when a host is down
for maintenance or back in use. This is handy for different things, like
enabling/disabling self-healing or billing. The same interface could also be
used for adding/removing hosts.

The design makes it possible to make everything with ‘one-click’. Generic API,
notifications and tracking in a database are provided by Fenix together with
example workflow and action plug-ins. Anyhow, to build for specific cloud
deployment, one can provide workflow and action plug-ins to Fenix to fit to
any use case one can think of.

Internal design

Fenix design is pluggable:

[image: ../_images/fenix-internal.png]
fenix-api is used to make maintenance workflow sessions and to provide admin
and project owners an API to communicate to Fenix.

fenix-engine is running the maintenance workflow sessions and keeping track
in database.

base workflow is providing basic Fenix functionality that can be inherited
by the workflow plug-in used in each maintenance session.

workflow plug-in is the workflow for your maintenance session. Different
plug-ins can be implemented for different clouds and deployments.

action plug-ins are called by the workflow plug-in. It is possible to have
different type of plug-ins, and if there is more than one of a specific type,
one can also define the order they are executed. These types are currently in
use in the Fenix example workflows. You can always define your own type
according to your workflow implementation:

	pre plug-in is run first

	host plug-in is run for each host

	compute plug-in is run on each compute host

	controller plug-in is run on each controller host

	post plug-in is run last

There is a possibility to define ‘metadata’ to further indicate plug-in
specifics.

Interface design

Fenix has API and notifications that can be caught by different endpoint
interfaces by subscribing to corresponding event alarm:

[image: ../_images/fenix-interface.png]
Infrastructure admin has an API to trigger, query, update and delete
maintenance sessions. Admin can also receive the status of a maintenance
session by the ‘maintenance.session’ notification trough ‘oslo.notification’.
It is also possible to get the same information by subscribing to the
corresponding event alarm. This is handy for getting the event to own favorite
API endpoint.

Project/application having instances on top of the infrastructure under
maintenance can have a manager (VNFM) to communicate with the maintenance
session workflow. The manager can subscribe to project specific
‘maintenance.planned’ event alarms to get information about maintenance session
state affecting its instances. The subscription also tells the workflow that
the project has a manager capable of communicating with the workflow.
Otherwise, workflow should have a default behavior towards project instances,
or fail if communication is mandatory in your cloud use case. There is also
a project-specific API to query its instances under current maintenance
workflow session state and to answer back to workflow.

Any infrastructure service can also be made to support ‘maintenance.host’
notification. This notification is telling whether a host is in maintenance or
back in normal use. This might be important for enabling/disabling self-healing
or billing. Notification can also be used to indicate when a host is added or
removed.

High level sequence diagram

This is the original design diagram not utilizing the ETSI defined
instance and instance group constraints.

 blockdiag

 infra-admin

 fenix

 app-manager

 Start the maintenance process

 Optional down scale

 If there is not empty host Fenix makes one

 If VM-s are on the host. Migrate or Live migrate

 Maintenance is done

 Up scale
 Maintenance session
 for hosts
 MAINTENANCE
 ACK_MAINTENANCE
 IN_SCALE
 ACK_IN_SCALE
 PREPARE_MAINTENANCE
 ACK_PREPARE_MAINTENANCE
 ADMIN_ACTION_DONE
 PLANNED_MAINTENANCE
 ACK_PLANNED_MAINTENANCE
 ADMIN_ACTION_DONE
 IN_MAINTENANCE
 MAINTENANCE_COMPLETE
 MAINTENANCE_COMPLETE
 ACK_MAINTENANCE_COMPLETE

 Repeated for every compute

 Actual maintenance happens here

This advanced diagram utilizing the ETSI defined instance and instance group
constraints.

 blockdiag

 app-manager

 fenix

 infra-admin

 Start the maintenance process

 Optional down scale

 If there is not empty host Fenix makes one

 If VM-s are on the host. Migrate or Live migrate

 Maintenance is done

 Up scale
 Update instance and instance
 group constraints anytime a
 nd when created
 Maintenance session
 for hosts
 MAINTENANCE
 ACK_MAINTENANCE
 IN_SCALE
 Remove instance related cons
 traints of scaled down insta
 nces. Update instance groups
 constraints to match scalin
 g
 ACK_IN_SCALE
 PREPARE_MAINTENANCE
 ACK_PREPARE_MAINTENANCE
 ADMIN_ACTION_DONE
 PLANNED_MAINTENANCE
 ACK_PLANNED_MAINTENANCE
 ADMIN_ACTION_DONE
 IN_MAINTENANCE
 MAINTENANCE_COMPLETE
 MAINTENANCE_COMPLETE
 Add instance constraints of
 instances possibly added whe
 n scaling up when maintenanc
 e is completed. Update insta
 nce groups constraints to ma
 tch scaling
 ACK_MAINTENANCE_COMPLETE

 Repeated for every compute

 Actual maintenance happens here

 Fenix BaseWorkflow

Fenix BaseWorkflow

BaseWorkFlow class implemented in ‘/fenix/workflow/workflow.py’ is the one you
inherit when creating your own workflow. Example workflow ‘default.py’ using
this can be found from the workflow directory ‘/fenix/workflow/workflows’.

The class provides the access to all maintenance session related data and the
ability to send Fenix notifications and process the incoming API requests.

There is also a dictionary describing the generic workflow states that should be
supported:

{
 "MAINTENANCE": "maintenance",
 "SCALE_IN": "scale_in",
 "PREPARE_MAINTENANCE": "prepare_maintenance",
 "START_MAINTENANCE": "start_maintenance",
 "PLANNED_MAINTENANCE": "planned_maintenance",
 "MAINTENANCE_COMPLETE": "maintenance_complete",
 "MAINTENANCE_DONE": "maintenance_done",
 "MAINTENANCE_FAILED": "maintenance_failed"
}

Key is the state name and value is the internal method that you
iplement in your workflow to handle that state. When the method returns, it
will be checked from Class variable ‘self.state’ what is the next method to be
called. So your state related method should change ‘self.state’ to what you
want to do next. The method should also implement calling of any action plug-ins
and other state related functionality like sending notifications.

States

Here is what is supposed to be done in different states when also utilizing
the default workflow.

MAINTENANCE

This is the initial state right after infrastructure admin has created the
maintenance session.

Here one should check if all projects are subscribed to AODH event alarm for
event type ‘maintenance.planned’. If project supports this, one can assume we
can have interaction with that project manager (VNFM). If not, we should have some
default handling for project instances during rolling maintenance, or we should
decide to go to state ‘MAINTENANCE_FAILED’ as we do not support that kind of
project. From here onwards, we assume projects support this interaction, so
can better define other coming states.

Next, we send ‘maintenance.planned’ notification with state ‘MAINTENANCE’ to
each project. We wait for the duration of ‘self.conf.project_maintenance_reply’
the reply or fail if some project did not reply. After all projects are in state
‘ACK_MAINTENANCE’ we can wait until the time is ‘self.session.maintenance_at’
and then start the actual maintenance.

When it is time to start we might call the type ‘pre’ action plugins to make
actions needed before rolling host by host forwards. This might include
downloading of needed software changes and already doing some actions for
controllers in case of maintenance operation like OpenStack upgrade.

If currently all the compute capacity is in use and we want to have
an empty compute that we can maintain first, we should have ‘self.state’ as
‘SCALE_IN’ to scale down the application. If there is capacity, but no empty
host (assuming we want to make maintenance only to empty host), we can have
‘self.state’ as ‘PREPARE_MAINTENANCE’ to move instances around to have an empty
host if possible. In case we had an empty host, we can go straight put
‘self.state’ to ‘START_MAINTENANCE’ to start maintenance on that host.

SCALE_IN

We send ‘maintenance.planned’ notification with state ‘SCALE_IN’ to each
project. We wait duration of ‘self.conf.project_scale_in_reply’ the reply or
fail if some project did not reply. After all projects are in the state
‘ACK_SCALE_IN’ we can repeat the same checks as in state ‘MAINTENANCE’ to
decide is ‘self.state’ should be ‘SCALE_IN’, ‘PREPARE_MAINTENANCE’ or
‘START_MAINTENANCE’. Again on any error we always put ‘self.state’ to
‘MAINTENANCE_FAILED’

PREPARE_MAINTENANCE

As we have some logic to figure out the host that we can make empty, we can
send ‘maintenance.planned’ notification with state ‘PREPARE_MAINTENANCE’ to each
project having instances on that host. We wait for the duration of
‘self.conf.project_maintenance_reply’ the reply or fail if some project did
not reply. After all affected projects are in state ‘ACK_PREPARE_MAINTENANCE’ we
can check project and instance specific answer and make action given like
‘migrate’ to move instances away from the host. After the action is done we will
send ‘maintenance.planned’ for each each instance with the state
‘INSTANCE_ACTION_DONE’ and with the corresponding ‘instance_id’.

Next, we should be able to put ‘self.state’to ‘START_MAINTENANCE’.

START_MAINTENANCE

In case no hosts are maintained yet, we can go through all empty compute hosts in
the maintenance session:

We send ‘maintenance.host’ notification with state ‘IN_MAINTENANCE’ for
each host before we start to maintain it. Then we run action plug-ins of
type ‘host’
in the order they are defined to run. After we are ready with the
maintenance actions we send ‘maintenance.host’ notification with state
‘MAINTENANCE_COMPLETE’.

When all empty computes are maintained we can put ‘self.state’ to
‘PLANNED_MAINTENANCE’.

In case all empty hosts were already maintained, we could pick empty host that
we have after ‘PLANNED_MAINTENANCE’ is run on some compute host:

We send ‘maintenance.host’ notification with state ‘IN_MAINTENANCE’ before
we start to maintain the host. Then we run action plug-ins of type ‘host’ in
the order they are defined to run. After we are ready with the maintenance
actions we send ‘maintenance.host’ notification with state
‘MAINTENANCE_COMPLETE’.

When all empty computes are maintained we can put ‘self.state’ to
‘PLANNED_MAINTENANCE’ or if all compute hosts are maintained we can put
‘self.state’ to ‘MAINTENANCE_COMPLETE’.

PLANNED_MAINTENANCE

We find a host that has not been maintained yet and contains instances. After
choosing the host, we can send ‘maintenance.planned’ notification with state
‘PLANNED_MAINTENANCE’ to each project having instances on the host. After all
affected projects are in state ‘ACK_PLANNED_MAINTENANCE’ we can check project
and instance specific answer and make action given like ‘migrate’ to move
instances away from the host. After the action is done we will send
‘maintenance.planned’ with the state ‘INSTANCE_ACTION_DONE’ with the
‘instance_id’ for the instance action was completed. It might also be that
the project manager did already an own to re-instantiate, so we do not have to
do any action.

When the project manager receives ‘PLANNED_MAINTENANCE’ it also knows that
instances will now be moved to the already maintained host. With the payload,
there will also go ‘metadata’ that can indicate new capabilities the project is
getting when instances are moving. It might be for example:

“metadata”: {“openstack_version”: “Queens”}

It might be nice to make the application (VNF) upgrade now at the same time
when instances are anyhow moved to new compute host with new capabilities.

Next, when all instances are moved and the host is empty, we can put
‘self.state’ to ‘START_MAINTENANCE’

MAINTENANCE_COMPLETE

Now all instances have been moved to already maintained compute hosts and all
compute host are maintained. Next, we might run action ‘post’ type of action
plug-ins to finalize maintenance.

When this is done we can send ‘maintenance.planned’ notification with state
‘MAINTENANCE_COMPLETE’ to each project. In case projects scaled down at the
beginning of the maintenance they can now scale back to full operation. After
all projects are in state ‘ACK_MAINTENANCE_COMPLETE’ we can change the
‘self.state’ to ‘MAINTENANCE_DONE’

MAINTENANCE_DONE

This will now make the maintenance session idle until infrastructure admin will
delete it.

MAINTENANCE_FAILED

This will now make the maintenance session idle until infrastructure admin will
fix and continue the session or delete it.

Future

Currently, infrastructure admin needs to poll Fenix API to know the session
state. When notification with the event type ‘maintenance.session’ gets
implemented, infrastructure admin will be receiving state change whenever it
will change.

 Fenix Advanced Workflow

Fenix Advanced Workflow

Example advanced workflow is implemented as ‘fenix/workflow/workflows/vnf.py’.
This workflow utilizes the ETSI defined instance and instance group constraints.
Later there needs to be a workflow also with NUMA and CPU pinning. That will
be very similar, but it will need more specific placement decisions which
mean scaling has to be for exact instances and moving operations have to be
calculated to have the same pinning obeyed.

Workflow states are similar to ‘default’ workflow, but there is some
differences addressed below.

The major difference is that VNFM is supposed to update VNF instance and
instance group constrains dynamically always to match VNF current state.
Constraints can be seen in API documentation as APIs are used to update the
constraints to Fenix DB. Constraints help Fenix workflow to optimize the
workflow as fast as it can, when it knows how many instances can be affected
and all other constraints that also makes sure there is zero impact to VNF
service.

States

MAINTENANCE

Difference to default workflow here is that by the time the maintenance is called
and we enter to this first state all VNFs affected needs to have instance and
instance group constraints updated to Fenix. A perfect VNFM side implementation
should always make sure the changes in VNF will be reflected here.

SCALE_IN

As Fenix is now aware of all the constraints, it can optimize many things. One
is to scale exact instances as we know max_impacted_members for each instance
group, we can optimize how much we scale down to have optimal amount of empty
compute nodes while still have optimal amount of instances left as
max_impacted_members. Other thing here is when using NUMA and CPU pinning.
We definitely need to dictate the scaled down instances as we need
exact NUMA and CPUs free to be able to have empty compute host. Also when
making the move operations to pinned instances we know it will always succeed.
A special need might also be in edge could system, where there is very few
compute host available.

After Fenix workflow has made its math, it may suggest the instances to be
scaled. If VNFM reject this, retry can let VNFM decide how it scales down,
while it might not be optimal.

VNFM needs to update instance and instance group constraints after scaling.

PREPARE_MAINTENANCE

After state ‘SCALE_IN’ the empty compute capacity can be scattered. Now workflow
need to make math of how to get empty compute nodes in the best possible way.
As we have all the constraints we can do operations parallel for different
compute nodes, VNFs and their instances in different instance groups.

Compared to default workflow ‘maintenance.planned’ notification is always for
single instance only.

START_MAINTENANCE

Biggest enhancement here is that hosts can be handled parallel if feasible.

PLANNED_MAINTENANCE

As we have all the constraints we can do operations parallel for different
compute nodes, VNFs and their instances in different instance groups.

Compared to default workflow ‘maintenance.planned’ notification is always for
single instance only.

MAINTENANCE_COMPLETE

This is same as in default workflow, but VNFM needs to update instance and
instance group constraints after scaling.

MAINTENANCE_DONE

This will now make the maintenance session idle until infrastructure admin will
delete it.

MAINTENANCE_FAILED

This will now make the maintenance session idle until infrastructure admin will
fix and continue the session or delete it.

 Notifications

Notifications

Similarly to other OpenStack services Fenix emits notifications to the message
bus with the Notifier class provided by oslo.messaging 1. From the
notification consumer point of view a notification consists of two parts:
an envelope with a fixed structure defined by oslo.messaging and a payload
defined by the service emitting the notification. The envelope format
is the following:

{
 "priority": "string, selected from a predefined list by the sender.
 Fenix currently uses 'info'.",
 "event_type": "string, defined by the sender. Event types are defined
 later in this docuemnt.",
 "timestamp": "string, the isotime of when the notification emitted",
 "publisher_id": "string, defined by the sender. Fenix uses 'fenix'",
 "message_id": "uuid, generated by oslo.",
 "payload": "json serialized dict, defined by the sender. This is
 defined for each event type later in this document."
}

Admin

These notifications are meant for admin level user. Infrastructure admin who is
in charge of triggering the rolling maintenance and upgrade workflows and for
any infrastructure service needing to know about the host being in maintenance.
This might be used for enabling/disabling self-healing or billing.

Event type ‘maintenance.host’

This event type is meant for infrastructure services to know the host might be
down and taken out of normal usage. Also after the host is back or new host
added, there is another message to tell host is back in use or added. This might
be meaningful for self-healing or billing.

payload

	Name

	Type

	Description

	service

	string

	Origin service name: Fenix

	state

	string

	Maintenance state. values can be ‘IN_MAINTENANCE’ or ‘MAINTENANCE_COMPLETE’.
In future this might have also values like ‘HOST_ADDED’ or ‘HOST_REMOVED’.

	session_id

	string

	UUID of the related maintenance session

	host

	string

	Host name

	project_id

	string

	workflow admin project ID

Example:

{
 "service": "fenix",
 "state": "IN_MAINTENANCE",
 "session_id": "76e55df8-1c51-11e8-9928-0242ac110002",
 "host": "overcloud-novacompute-0.opnfvlf.org",
 "project_id": "ead0dbcaf3564cbbb04842e3e54960e3"
}

Event type ‘maintenance.session’

This event type is meant for infrastructure admin to know the changes in the
ongoing maintenance workflow session. This can be used instead of polling API.
Via API you will get more detailed information if you need to troubleshoot.

payload

	Name

	Type

	Description

	service

	string

	Origin service name: Fenix

	state

	string

	Maintenance workflow state (States explained in the user guide)

	session_id

	string

	UUID of the related maintenance session

	percent_done

	string

	How many percent of hosts are maintained

	project_id

	string

	workflow admin project ID

Example:

{
 "service": "fenix",
 "state": "IN_MAINTENANCE",
 "session_id": "76e55df8-1c51-11e8-9928-0242ac110002",
 "percent_done": 34,
 "project_id": "ead0dbcaf3564cbbb04842e3e54960e3"
}

Project

These notifications are meant for a project level user to know about
a maintenance session affecting its instances.

Project/application manager (VNFM) can have a ‘POST /maintenance’ API to catch
notification through an AODH event alarm 2.

Event type ‘maintenance.planned’

This event type is meant for a project level user to know about
a maintenance session state affecting its instances. According to this event
project manager (VNFM) can know to make actions to its instances affected by
maintenance and replying back to Fenix.

payload

	Name

	Type

	Description

	service

	string

	Origin service name: fenix

	allowed_actions

	list

	A list of allowed actions for an instance. Allowed values are:
‘MIGRATE’, ‘LIVE_MIGRATE’ and ‘OWN_ACTION’. ‘OWN_ACTION’ means
an action project manager can do itself. Usually this could be
re-instantiation even with a new flavor. Other actions are done by
Fenix as they need the admin privileges. In Kubernetes also ‘EVICTION’
supported. There admin will delete instance and VNF automation like
ReplicaSet will make a new instance. Valid for states:
‘SCALE_IN’, ‘PREPARE_MAINTENANCE’ and ‘PLANNED_MAINTENANCE’.

	instance_ids

	string

	Link to Fenix maintenance session and project specific API to get
instance IDs related to current maintenance workflow ‘state’.
A special case is with the ‘state’ ‘INSTANCE_ACTION_DONE’ where the
value is a single instance_id only. When using Telco workflow with
ETSI defined constraints value is also just a single instance_id in
the ‘state’ ‘PREPARE_MAINTENANCE’ and ‘PLANNED_MAINTENANCE’.

	reply_url

	string

	Link to Fenix maintenance session and project specific API to send the
reply corresponding to this notification. When using Telco workflow
with ETSI defined constraints reply URL is instance specific in the
the ‘state’ ‘PREPARE_MAINTENANCE’ and ‘PLANNED_MAINTENANCE’.

	state

	string

	
	Maintenance workflow session state. Can have different values:

	
	‘MAINTENANCE’ to tell project about a created maintenance session.

	‘SCALE_IN’ to tell the project should scale down instances.

	‘PREPARE_MAINTENANCE’ to tell the project some instances need to
be moved.

	‘PLANNED_MAINTENANCE’ to tell project some instances are on a host
going to be maintained next and are to move to a host that is
already maintained.

	‘MAINTENANCE_COMPLETE’ to tell the project the maintenance session
is complete. The Project can upscale to full capacity if scaled
down before.

	‘INSTANCE_ACTION_DONE’ to tell project that Fenix has compeleted
action like migration for a specific instance

	session_id

	string

	UUID to related maintenance session

	reply_at

	string

	time when need to reply to Fenix

	actions_at

	string

	time when Fenix triggers its actions

	project_id

	string

	workflow admin project ID

	metadata

	dictionary

	Can tell hints; like new capabilities coming after as a result to
‘state’ ‘PLANNED_MAINTENANCE’ when instances will be moving to already
maintained host. As knowing these capabilities, the project-manager
can plan its own upgrade at the same time or later. This will be handy
to even re-instantiate instances with a new flavor to take a new type
of hardware into use.

Example of notification for many instances:

{
 "service": "fenix",
 "allowed_actions": ["MIGRATE", "LIVE_MIGRATE", "OWN_ACTION"],
 "instance_ids": "http://0.0.0.0:12347/v1/maintenance/76e55df8-1c51-11e8-9928-0242ac110002/ead0dbcaf3564cbbb04842e3e54960e3",
 "reply_url": "http://0.0.0.0:12347/v1/maintenance/76e55df8-1c51-11e8-9928-0242ac110002/ead0dbcaf3564cbbb04842e3e54960e3",
 "state": "MAINTENANCE",
 "session_id": "76e55df8-1c51-11e8-9928-0242ac110002",
 "reply_at": "2018-02-28T06:40:16",
 "actions_at": "2018-02-29T00:00:00",
 "project_id": "ead0dbcaf3564cbbb04842e3e54960e3",
 "metadata": {"openstack_release": "Queens"}
}

Example of notification for single instance. Note the instance specific
‘reply_url’:

{
 "service": "fenix",
 "allowed_actions": ["MIGRATE", "LIVE_MIGRATE", "OWN_ACTION"],
 "instance_ids": ["28d226f3-8d06-444f-a3f1-c586d2e7cb39"],
 "reply_url": "http://0.0.0.0:12347/v1/maintenance/76e55df8-1c51-11e8-9928-0242ac110002/ead0dbcaf3564cbbb04842e3e54960e3/28d226f3-8d06-444f-a3f1-c586d2e7cb39",
 "state": "PREPARE_MAINTENANCE",
 "session_id": "76e55df8-1c51-11e8-9928-0242ac110002",
 "reply_at": "2018-02-28T06:40:16",
 "actions_at": "2018-02-29T00:00:00",
 "project_id": "ead0dbcaf3564cbbb04842e3e54960e3",
 "metadata": {"openstack_release": "Queens"}
}

Example of notification for single instance in Kubernetes. Note the instance
specific ‘reply_url’ and allowed actions for Kubernetes:

{
 "service": "fenix",
 "allowed_actions": ["OWN_ACTION", "EVICTION"],
 "instance_ids": ["28d226f3-8d06-444f-a3f1-c586d2e7cb39"],
 "reply_url": "http://0.0.0.0:12347/v1/maintenance/76e55df8-1c51-11e8-9928-0242ac110002/ead0dbcaf3564cbbb04842e3e54960e3/28d226f3-8d06-444f-a3f1-c586d2e7cb39",
 "state": "PREPARE_MAINTENANCE",
 "session_id": "76e55df8-1c51-11e8-9928-0242ac110002",
 "reply_at": "2018-02-28T06:40:16",
 "actions_at": "2018-02-29T00:00:00",
 "project_id": "ead0dbcaf3564cbbb04842e3e54960e3",
 "metadata": {"openstack_release": "Queens"}
}

	1

	http://docs.openstack.org/developer/oslo.messaging/notifier.html

	2

	https://docs.openstack.org/aodh/latest/admin/telemetry-alarms.html#event-based-alarm

 Administrators guide

Administrators guide

Fenix

Fenix should be deployed to the infrastructure controller or manager node
and be used for any cloud infrastructure maintenance, upgrade, scaling or
life-cycle operations.

VNF and VNFM

In the NFV use case, the VNF and VNFM need to support Fenix to optimize the
workflows and to guarantee zero impact to VNF during different infrastructure
operations. This means instance and instance group constraints and the
interaction with Fenix. Operations are most optimal when the VNF can be scaled
according to its current utilization level. This allows for the smallest possible
maintenance window, with zero impact on the VNF service.

Infrastructure Admin UI

Infrastructure admin UI needs to support Fenix. UI needs to be able to call
the Fenix admin APIs and preferably listen to Fenix admin events. UI should
be able to call different infrastructure maintenance and upgrade workflows
with needed parameters. APIs and events also give the possibility to have
detailed information about the workflow progress and to troubleshoot possible
errors. In complex clouds, errors can be still simple and quickly corrected
even manually. In this kind of special case, the UI can also support updating
Fenix workflow session to continue exactly where it failed. Explained in
GET /v1/maintenance/{session_id}/detail

Integration

The above-mentioned UI, VNF and VNFM are currently not in the scope of Fenix.
The implementation should be in other open-source projects or own proprietary
solutions. Currently, at least OpenStack Tacker is looking to support Fenix.

For testing the integration of Fenix, there is tools [https://opendev.org/x/fenix/src/branch/master/fenix/tools/README.md] directory including
definitions of sample VNFs, VNFM and admin UI. There are also instructions on
how to test Fenix example workflows. These tools give an idea of what needs to
be supported and how to integrate Fenix in the production environment. Note
that tools only give what needs to be in the VNFM and VNF side for Fenix
testing purposes. They do not try to have a standard implementation like
VNFD or other needed interactions on VNF side. What is standard, is the
interfacing against Fenix.

 References

References

References of Fenix.

 Fenix specifications

Fenix specifications

	ETSI NFVI software modification specification
	Problem description

	Proposed change

	Implementation

	Dependencies

	Testing

	Documentation Impact

	References

 ETSI NFVI software modification specification

ETSI NFVI software modification specification

https://storyboard.openstack.org/#!/story/2006557

Implement the needed interfacing between VNFM and Fenix that is specified in
ETSI FEAT03 related documentation [https://nfvwiki.etsi.org/index.php?title=Feature_Tracking#FEAT03:_NFVI_software_modification] etsi. Limit current changes to instances
and instance groups.

Problem description

This feature addresses the support for the coordination of the NFVI software
modification process with the VNFs hosted on the NFVI in order to minimize
impact on service availability.

Use Cases

Guarantee a zero impact to VNF service during Fenix infrastructure maintenance,
upgrade and scaling workflow operation. This implies that VNF and VNFM supports
the ETSI specification and Fenix interaction.

Proposed change

Implement APIs to set VNF specific instance and instance group variables.

New APIs are to have VNF project instance and instance group data changed in
the Fenix database. These constraints might be set in VNFD or the VNF element
manager can change these any time according to VNF current load level.
Having the constraints gives the ability to optimize the infrastructure
maintenance operation as we can scale down the VNFs as much as possible and
therefore to able to maintain parallel as many compute nodes as possible.
Instance grouping can be instances belonging to certain anti-affinity group,
but all instances need to be grouped, so we know how many of those are at
least needed and how many of those can be exposed to maintenance at the same
time. If nothing else, group mean instance of a certain flavor.

Make an example workflow that supports the usage of these APIs. Workflow should
implement one example rolling maintenance use case. Existing Fenix interaction
towards VNFM will be utilized with small changes.

The variables common to instance and instance group can be overridden in the
instance object. Both objects can be updated at any time. Update can be
considered in any action that is not currently not ongoing. Existing timer
would not be updated. These objects are not enough to optimize infrastructure
workflow. The existing Fenix interaction is also needed to optimize the
maintenance window as small as possible. Also this allows upgrading the VNF
with new infrastructure capabilities and with no additional impact on VNF
service availability if done at the same time as the infrastructure upgrade.

This diagram will illustrate the existing Fenix workflow where application
manager updates instance and instance group constraints always when
instances are created or deleted. Constraints can also be updated anytime
if the level of VNF service will allow different amount of instances at
that time.

 blockdiag

 app-manager

 fenix

 infra-admin

 Start the maintenance process

 Optional down scale

 If there is not empty host Fenix makes one

 If VM-s are on the host. Migrate or Live migrate

 Maintenance is done

 Up scale
 Update instance and instance
 group constraints anytime a
 nd when created
 Maintenance session
 for hosts
 MAINTENANCE
 ACK_MAINTENANCE
 IN_SCALE
 Remove instance related cons
 traints of scaled down insta
 nces. Update instance groups
 constraints to match scalin
 g
 ACK_IN_SCALE
 PREPARE_MAINTENANCE
 ACK_PREPARE_MAINTENANCE
 ADMIN_ACTION_DONE
 PLANNED_MAINTENANCE
 ACK_PLANNED_MAINTENANCE
 ADMIN_ACTION_DONE
 IN_MAINTENANCE
 MAINTENANCE_COMPLETE
 MAINTENANCE_COMPLETE
 Add instance constraints of
 instances possibly added whe
 n scaling up when maintenanc
 e is completed. Update insta
 nce groups constraints to ma
 tch scaling
 ACK_MAINTENANCE_COMPLETE

 Repeated for every compute

 Actual maintenance happens here

Alternatives

N/A

Data model impact

Fenix database will need to have new tables to support instance and
instance group objects.

REST API impact

All APIs will have 200 OK as return. Error codes defined during implementation.

API PUT /v1/instance/{instance_id} is used to update instance object.
API GET /v1/instance/{instance_id} is used to get instance object.
PUT API should have this structure as input and GET API as return:

{
 "instance_id": "instance_UUId string",
 "project_id": "Project UUID string",
 "group_id": "group_UUID string",
 "instance_name": "Name string",
 "max_interruption_time": 120, # seconds
 # How long live migration can take
 "migration_type": "LIVE_MIGRATION",
 # LIVE_MIGRATION, MIGRATION or OWN_ACTION
 # Own action is create new and delete old instance.
 # Note! VNF need to obey resource_mitigation with own action
 # This affects to order of delete old and create new to not over
 # commit the resources.
 "resource_mitigation": "True", # True or False
 # Current instance needs double allocation when being migrated.
 # This is true also if instance first scaled out and only then the old
 # instance is removed. It must be True also if VNF needed to scale
 # down, since we go over that scaled down capacity.
 "lead_time": 60 # seconds
 # How long lead time VNF needs for 'migration_type' operation. VNF needs to
 # report back to Fenix as soon as it is ready, but at least within this
 # time. Reporting as fast as can is crucial for optimizing
 # infrastructure upgrade/maintenance.
}

API DELETE /v1/instance/{instance_id} is used to delete instance object.

API PUT /v1/instance_group/{group_id} is used to update instance group
object:

{
 "group_id": "group_UUID string",
 "project_id": "Project UUID string",
 "group_name": "Name string",
 "anti_affinity_group": "True", # True or False
 "max_instances_per_host": 2, # 1..N
 # Describes how many instance can be on same host with
 # anti_affinity_group: True
 # Already exist in OpenStack as 'max_server_per_host', but might not
 # exist in different clouds.
 "max_impacted_members": 2, # 1..N
 # Maximum amount of instances that can be impacted
 # Note! This can be dynamic to VNF load
 "recovery_time": 10, # seconds
 # max_impacted_members needs to take into account counting previous
 # action members before the recovery time passes
 # Note! regardless anti_affinity
 "resource_mitigation": "True", # True or False
 # Instances in group needs double allocation when affected.
 # This is true in migrations, but also if instance first scaled out and
 # only then the old instance removed.
 # It must be True also if VNF needed to scale down, since we go over
 # that scaled down capacity.
}

API GET /v1/instance_group/{group_id} is used to get instance group.
compared to PUT this strcuture has also the instance_ids:

{
 "group_id": "group_UUID string",
 "project_id": "Project UUID string",
 "group_name": "Name string",
 "anti_affinity_group": "True", # True or False
 "max_instances_per_host": 2, # 1..N
 # Describes how many instance can be on same host with
 # anti_affinity_group: True
 # Already exist in OpenStack as 'max_server_per_host', but might not
 # exist in different clouds.
 "max_impacted_members": 2, # 1..N
 # Maximum amount of instances that can be impacted
 # Note! This can be dynamic to VNF load
 "recovery_time": 10, # seconds
 # max_impacted_members needs to take into account counting previous
 # action members before the recovery time passes
 # Note! regardless anti_affinity
 "resource_mitigation": "True", # True or False
 # Instances in group needs double allocation when affected.
 # This is true in migrations, but also if instance first scaled out and
 # only then the old instance removed.
 # It must be True also if VNF needed to scale down, since we go over
 # that scaled down capacity.
 "instance_ids": [] # List of instances belonging to this group
}

API DELETE /v1/instance_group/{instance_id} is used to delete instance
group object.

New API is needed for project instance specific reply:

This API will not be used to reply to ‘state’ ‘PREPARE_MAINTENANCE’ and
‘PLANNED_MAINTENANCE’ notifications that will be instance specific.

PUT /v1/maintenance/<session_id>/<project_id>/<instance_id>:

{
 "instance_action": "MIGRATE",
 "state": "ACK_PLANNED_MAINTENANCE"
}

Notifications impact

Event type maintenance.planned notification will need changes.

New state value INSTANCE_ACTION_FALLBACK should be added to tell live
migration was not possible and Fenix will force the migration to complete.
After that the normal INSTANCE_ACTION_DONE or INSTANCE_ACTION_FAILED
will be expected.

instance_ids is currently limited to either single instance_id or
a link to get all affected instances. Now this should be always a single
instance, but in state value of MAINTENANCE or SCALE_IN.
MAINTENANCE should always have the link to Fenix API to get all instances
that may be affected during the maintenance session. SCALE_IN can mention
only one exact instance as it maybe be needed to allow other pinned instance
to have a target host with needed resources. This can happen in small edge
deployment. Empty string indicates VNF can decide how it scales down. Workflow
may then need to have several SCALE_IN notifications to finally have enough
unused resources to execute workflow further. state having value
MAINTENANCE_COMPLETE should have empty string as instance_ids value. In
this state VNF should scale back to instances it had in the beginning of
the maintenance session.

Other end user impact

VNFD and EM needs to support defining and updating instance and instance group
variables

Other deployer impact

VNFM needs to proxy updating instance and instance group
variables

Implementation

Assignee(s)

	Primary assignee:

	Tomi Juvonen <tomi.juvonen@nokia.com>

Work Items

	APIs to set instance and instance group objects

	Example workflow

	Testing

	Documentation changes

Dependencies

There can be enhancements later on to other projects. Anyhow initially needed
functionality can be handled completely inside Fenix.

Testing

There is huge amount of combinations of VNF deployments and used variables can
be changed during the operations. Fenix will support all there variables and
their changes. Fenix workflow is always an example and limits to what it can
support and is tested against. The main thing to test is that all variables and
their changes are supported and validated. The testing of VNF deployment might
be limited to example use case supported by example workflow.

Documentation Impact

Fenix documentation needs to be updated after the implementation is ready.

References

 Index

Index

 Prerequisites

Prerequisites

Before you install and configure the Fenix service,
you must create a database, service credentials, and API endpoints.

	To create the database, complete these steps:

	Use the database access client to connect to the database
server as the root user:

$ mysql -u root -p

	Create the fenix database:

CREATE DATABASE fenix;

	Grant proper access to the fenix database:

GRANT ALL PRIVILEGES ON fenix.* TO 'fenix'@'localhost' \
 IDENTIFIED BY 'FENIX_DBPASS';
GRANT ALL PRIVILEGES ON fenix.* TO 'fenix'@'%' \
 IDENTIFIED BY 'FENIX_DBPASS';

Replace FENIX_DBPASS with a suitable password.

	Exit the database access client.

exit;

	Source the admin credentials to gain access to
admin-only CLI commands:

$. admin-openrc

	To create the service credentials, complete these steps:

	Create the fenix user:

$ openstack user create --domain default --password-prompt fenix

	Add the admin role to the fenix user:

$ openstack role add --project service --user fenix admin

	Create the Fenix service entities:

$ openstack service create --name fenix --description "fenix" fenix

Note! In Fenix workflow you may want to have ssh access to all nodes for
your Fenix action plug-ins to scp filex and locally execute scripts on
those nodes. This means you may want to have the ssh without password
configured for Fenix service user.

	Create the Fenix service API endpoints:

$ openstack endpoint create --region RegionOne \
 fenix public http://controller:XXXX/vY/%\(tenant_id\)s
$ openstack endpoint create --region RegionOne \
 fenix internal http://controller:XXXX/vY/%\(tenant_id\)s
$ openstack endpoint create --region RegionOne \
 fenix admin http://controller:XXXX/vY/%\(tenant_id\)s

Installation

Note! Fenix is currently not included in Linux distributions.
You need to clone and install it from source.

$ git clone https://opendev.org/x/fenix
$ cd fenix
$ sudo python setup.py install

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to the documentation of Fenix

 		
 Fenix Overview

 		
 Fenix service installation guide

 		
 Fenix service overview

 		
 Install and configure

 		
 Install and configure for Red Hat Enterprise Linux and CentOS

 		
 Install and configure for Ubuntu

 		
 Install and configure for openSUSE and SUSE Linux Enterprise

 		
 Install and configure for DevStack

 		
 Verify operation

 		
 Usage

 		
 Contributor Guide

 		
 Configuration

 		
 Configuration files

 		
 Dependencies and special configuration

 		
 Fenix external dependencies

 		
 API

 		
 API v1

 		
 Admin API

 		
 Admin workflow session API

 		
 Project API

 		
 Project workflow session API

 		
 Project NFV constraints API

 		
 Command line interface reference

 		
 User guide

 		
 Fenix Architecture

 		
 Internal design

 		
 Interface design

 		
 High level sequence diagram

 		
 Fenix BaseWorkflow

 		
 States

 		
 Future

 		
 Fenix Advanced Workflow

 		
 States

 		
 Notifications

 		
 Admin

 		
 Project

 		
 Administrators guide

 		
 Fenix

 		
 VNF and VNFM

 		
 Infrastructure Admin UI

 		
 Integration

 		
 References

_images/fenix-interface.png
